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We report high-resolution measurements of the properties of the velocity boundary
layer in turbulent thermal convection using the particle image velocimetry (PIV)
technique and measurements of the temperature profiles and the thermal boundary
layer. Both velocity and temperature measurements were made near the lower
conducting plate of a rectangular convection cell using water as the convecting
fluid, with the Rayleigh number Ra varying from 109 to 1010 and the Prandtl number
Pr fixed at 4.3. From the measured profiles of the horizontal velocity we obtain
the viscous boundary layer thickness δυ . It is found that δυ follows the classical
Blasius-like laminar boundary layer in the present range of Ra, and it scales with the
Reynolds number Re as δυ/H = 0.64Re−0.50±0.03 (where H is the cell height). While
the measured viscous shear stress and Reynolds shear stress show that the boundary
layer is laminar for Ra < 2.0 × 1010, two independent extrapolations, one based on
velocity measurements and the other on velocity and temperature measurements, both
indicate that the boundary layer will become turbulent at Ra ∼ 1013. Just above the
thermal boundary layer but within the mixing zone, the measured temperature r.m.s.
profiles σT (z) are found to follow either a power law or a logarithmic behaviour. The
power-law fitting may be slightly favoured and its exponent is found to depend on
Ra and varies from −0.6 to −0.77, which is much larger than the classical value
of −1/3. In the same region, the measured profiles of the r.m.s. vertical velocity
σw(z) exhibit a much smaller scaling range and are also consistent with either a
power-law or a logarithmic behaviour. The Reynolds number dependence of several
wall quantities is also measured directly. These are the wall shear stress τw ∼ Re1.55,
the viscous sublayer δw ∼ Re−0.91, the friction velocity uτ ∼ Re0.80, and the skin-
friction coefficient cf ∼ Re−0.34. All of these scaling properties are very close to
those predicted for a classical Blasius-type laminar boundary layer, except that of cf .
Similar to classical shear flows, a viscous sublayer is also found to exist in the present
system despite the presence of a nested thermal boundary layer. However, velocity
profiles normalized by wall units exhibit no obvious logarithmic region, which is
likely to be a result of the very limited distance between the edge of the viscous
sublayer and the position of the maximum velocity. Compared to traditional shear
flows, the peak position of the wall-unit-normalized r.m.s. profiles is found to be
closer to the plate (at z+ = z/δw � 5). Our overall conclusion is that a Blasius-type
laminar boundary condition is a good approximation for the velocity boundary layer
in turbulent thermal convection for the present range of Rayleigh number and Prandtl
number.
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1. Introduction
1.1. General

Turbulent Rayleigh–Bénard convection has attracted much interest during the past
decade, partly due to its relevance to astrophysical and geophysical phenomena such
as solar and mantle convections and partly because it is an ideal system to study
thermal turbulence in a closed box (Castaing et al. 1989; Siggia 1994; Kadanoff
2001). In turbulent convection, the flow is initiated and maintained by the buoyancy
force produced by an applied constant temperature difference across the height of
the convection cell. The dynamics of the flow is characterized by the geometry of the
cell and two control parameters, namely the Rayleigh number Ra and the Prandtl
number Pr. The Rayleigh number measures the ratio between the buoyancy force
driving the flow and the thermal and viscous dissipative forces that damp it, and
is defined as Ra = αg�T H 3/νκ . Here α is the thermal expansion coefficient, g the
gravitational acceleration, �T the temperature difference between the bottom and
the top plates, H the height of the fluid layer between the plates, and ν and κ are the
kinematic viscosity and the thermal diffusivity of the convecting fluid respectively.
The Prandtl number is defined as Pr = ν/κ , and it measures the relative strengths of
two molecular processes, i.e. diffusion of momentum and heat and sets the relative
size of the thermal and viscous length scales in the system.

A central issue in the study of turbulent thermal convection is to understand how
turbulent flows transport heat across the fluid layer. A measure of heat transfer
enhancement by convection is the Nusselt number Nu = QH/λf �T , where Q is the
heat flux density across a fluid layer of thermal conductivity λf . To determine the
Ra- and Pr-dependence of Nu, many experimental (Castaing et al. 1989; Takeshita
et al. 1996; Cioni, Ciliberto & Sommeria 1997; Du & Tong 1998; Glazier et al. 1999;
Xia & Qiu 1999; Ashkenazi & Steinberg 1999; Niemela et al. 2000; Ahlers & Xu
2001; Chavanne et al. 2001; Xia, Lam & Zhou 2002; Niemela & Sreenivasan 2003;
Shang et al. 2003) and numerical (Kerr 1996; Kenjereš & Hanjalić 2002; Verzicco &
Camussi 2003; Breuer et al. 2004; Amati et al. 2005) studies have been done in various
fluids and cell geometries. On the theoretical side, several models have been proposed
(Kraichnan 1962; Castaing et al. 1989; Shraiman & Siggia 1990; Grossmann & Lohse
2000, 2001 2004; Dubrulle 2001). Through these studies, it is now possible to make
detailed and high-precision comparisons between theory and experiment. An example
is the excellent agreement between Nu measured by Ahlers & Xu (2001) and by Xia
et al. (2002) and the model prediction by Grossmann & Lohse (2001) over a wide
range of Ra and Pr. Recently, the issue of aspect ratio Γ (lateral dimension of the
fluid layer over its height) has been raised (Niemela & Sreenivasan 2003; Grossmann
& Lohse 2003; Ching & Tam 2006) and measurements of Nu over a varying range
of Γ have been made (Nikolaenko et al. 2005; Funfschilling et al. 2005; Sun et al.
2005a; Niemela & Sreenivasan 2006).

1.2. The thermal and viscous boundary layers in turbulent thermal convection

At sufficiently high values of Ra, a large-scale circulation (LSC) is formed across the
height of the convection cell (Krishnamurti & Howard 1981). This circulation, also
known as the ‘wind’ in turbulent convection, has been studied extensively in recent
years, experimentally, theoretically and numerically (see, for example, Xi, Zhou & Xia
2006, which contains a large compilation of relevant references). As it sweeps across
the conducting plates, the LSC stabilizes the thermal boundary layer below/above via
its shear, which also creates a viscous boundary layer. Except for cases of very small
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Pr such as convection in liquid metals, the viscous layer is usually thicker than the
thermal layer. It has long been recognized that thermal and viscous boundary layers
near the upper and lower surfaces play an important role in determining the heat
flux and temperature and velocity statistics (Thomas & Townsend 1957; Priestley
1959; Townsend 1959). A manifestation of this is the limitation the thickness of the
thermal boundary layer imposes on the amount of heat that can be transported
across a Rayleigh–Bénard convection cell, as heat is transferred by conduction within
the thermal boundary layer. However, the thermal boundary layer is not isolated but
modified and stabilized by viscous shear of the LSC. This viscous shear also produces
a velocity boundary layer that is dynamically coupled to the thermal one.

Characterization of both boundary layers and their interplay is thus an important
part of the study of turbulent convection. By assuming that the velocity boundary
layer in turbulent convection is similar to those in shear flows, logarithmic corrections
to scaling have been introduced in theoretical models (Shraiman & Siggia 1990; Siggia
1994; Dubrulle 2001). Taking a different approach, Grossmann & Lohse (2000, 2001)
(referred to as GL) have put forward a theory that separates the viscous and thermal
dissipation rates into boundary layer and bulk contributions. By considering the
relative strengths of the boundary layer and bulk parts of the two dissipation rates,
GL obtained various flow regimes in the (Ra, Pr) phase plane. The model has
successfully explained some observed scaling laws in the system (GL 2000, 2001,
2004). An important assumption of the GL model is that the velocity (or viscous)
boundary layer behaves as a classical Blasius-type laminar layer. A defining feature
of the Blasius boundary layer is that its thickness δυ scales as 1/

√
Re. In turbulent

thermal convection, this result has so far not been observed experimentally in the
horizontal thermal conducting boundary, except near the vertical sidewall (Qiu & Xia
1998a) where the boundary is thermally insulating.

1.3. Previous thermal boundary layer measurements in turbulent thermal convection

Compared to those devoted to the bulk fluid of the system, experimental studies of
boundary layer properties in turbulent thermal convection are rather limited. For the
thermal boundary layer, Tilgner, Belmonte & Libchaber (1993) measured temperature
profiles at a fixed Ra (1.1 × 109) using water as the working fluid and obtained the
thermal boundary layer thickness. Belmonte, Tilgner & Libchaber (1993) also carried
out temperature boundary layer measurements using gas at room temperature for
Ra from 5 × 105 to 1 × 1011. They found that the Ra-dependence of the thermal
boundary layer thickness is close to Ra−2/7 for Ra > 2 × 107. Lui & Xia (1998) made
a systematic study of the spatial structures of the thermal boundary layer at various
positions over the bottom plate of a cylindrical convection cell with Ra varied from
2 × 108 to 2 × 1010, also using water as convecting fluid. Their results show that the
thermal boundary thickness at various positions of the plate is strongly modified by
the large-scale circulation, and that the scaling exponent of the boundary layer with
Ra is position-dependent. Their results also suggest that the boundary layer thickness
will eventually become uniform across the plate at very high Ra.

In a subsequent study, Wang & Xia (2003) measured the spatial structure of the
thermal boundary layer and its scaling dependence on Ra in a cubic cell filled with
water, with Ra varying from 108 to 1010. They also studied the statistical properties of
the temperature field both near the boundary and in the bulk. Similar to the case in a
cylindrical cell, Wang & Xia (2003) found that the thickness of the thermal boundary
layer in the cubic cell also depends on the horizontal position across the plate. In



82 C. Sun, Y.-H. Cheung and K.-Q. Xia

addition, they found that the profiles of the temperature r.m.s. measured for different
values of Ra can be scaled to collapse on a single curve, in contrast to the finding that
the shape of the scaled mean temperature profiles depends on Ra in both cylindrical
(Lui & Xia 1998) and cubic cells (Wang & Xia 2003). In a theoretical study, Ching
(1997) found a connection between the shape of the temperature profile and the heat
flux.

How the temperature and velocity r.m.s. profiles scale with distance near the
horizontal plate is also an issue of importance, because their scaling properties may
be used to differentiate the various theoretical models that make the same predictions
for global quantities such as the Nusselt number but have different assumptions for
the fluctuating velocity and temperature in the boundary layer region (Adrian 1996).
However, experimentally the situation is far from settled. In an experiment using
water as working fluid, Fernandes & Adrian (2002) reported observing logarithmic
profiles for both the temperature r.m.s. σT and the vertical velocity r.m.s. σw . On the
other hand, in a recent experiment using air as convecting fluid and with Ra reaching
1012, Puits et al. (2007) found that the profiles of σT follow a power-law behaviour
with an exponent that depends on both Ra and Γ .

1.4. Previous viscous boundary layer measurements in turbulent thermal convection

The viscous boundary layer is notoriously difficult to measure in thermal turbulence,
as large temperature fluctuations make conventional velocimetry techniques such as
laser Doppler velocimetry (LDV) ineffective in the boundary layer region. This is
because temperature fluctuations cause fluctuations in the refractive index of the
fluid that in turn make it difficult to steadily focus two laser beams to cross each
other in the fluid, a prerequisite for LDV. Partly because of the technical difficulties,
experimental studies on velocity boundary layers are rather limited. Tilgner et al.
(1993), using a electrochemical labelling method, measured the velocity profile near
the top plate of a cubic cell filled with water and then determined the boundary
layer thickness from the measured profile. Because of the cumbersome procedure of
the method, the velocity measurements were conducted only at a single value of Ra
(1.1 × 109). In a later study, Belmonte, Tilgner & Libchaber (1993, 1994) developed
an indirect method — the correspondence between the peak position of the cutoff
frequency (highest excitation frequency above noise) profile of the temperature power
spectrum and the peak position of the velocity – to infer the viscous boundary layer
thickness in gaseous convection. This method has subsequently been used to infer
the viscous layer in thermal convection in mercury (Naert, Segawa & Sano, 1997).
In a more systematic test of this method in water Xia & Zhou (2000) found that
the obtained boundary layer thickness agrees with that from direct light scattering
measurements (see below). But a justification for this method is not borne out in the
same study, which casts doubt over the validity of extending it to other fluids with
different Pr.

Using a novel light-scattering technique (Xia, Xin & Tong 1995) that avoids the
crossing of two laser beams required in LDV, Xin, Xia & Tong (1996) made direct
velocity boundary layer measurements near the bottom plate in a cylindrical cell
filled with water. Over the range of Ra from 108 to 1010, they determined that the
viscous boundary layer thickness has a scaling relation of δυ ∼ Ra−0.16±0.02. In a later
study using the same technique, Xin & Xia (1997) conducted systematic velocity and
boundary layer measurements by deploying four cylindrical cells of different aspect
ratios (Γ = 0.5, 1, 2, and 4.4), with Ra varying from 107 to 1011. Their results show
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that the previous finding δυ ∼ Ra−0.16 holds for all Γ studied. They also defined a
new boundary layer length scale (δσ ), identified from the profiles of the velocity r.m.s.,
and found that δσ ∼ Ra−0.25. In two separate studies, Qiu & Xia (1998a, b) measured
the boundary layer thickness respectively at the sidewall and at the bottom plate of
a cubic convection cell. Their results show that the scaling exponent of the boundary
layer thickness measured at the sidewall is the same as those found for classical shear
flows (their result gave δυ ∼ Ra−0.26±0.03, which implies δυ ∼ Re−0.52). On the other
hand, at the bottom plate they found δυ ∼ Ra−0.18±0.04, which is essentially the same
as in cylindrical cells (Xin et al. 1996; Xin & Xia 1997).

By measuring the degree of spatial correlation of temperature fluctuations between
two thermistor probes placed perpendicular to the mean flow direction, Zhou & Xia
(2001) were able to determine the viscous boundary layer thickness in a cylindrical
Rayleigh–Bénard convection cell in water. The results obtained are in excellent
agreement with those measured by the direct light-scattering technique. The technique
takes advantage of the existence of a predominantly horizontal coherent mean flow
near conducting plates and should be especially useful in fluids that are not easily
accessible to optical methods, such as liquid metals and gases.

Using a combination of water and three alcohol-type organic liquids as the
convecting fluids, Lam et al. (2002) measured both the Ra- and Pr-dependence
of the viscous boundary layer thickness in a single cylindrical convection cell of unity
aspect ratio. Over the range of Ra from 2×108 to 2×1010 and of Pr from 6 to 1027,
they found that the normalized viscous layer thickness can be represented as δυ/H

= 0.65Pr0.24Ra−0.16, where H is the cell height. Haramina & Tilgner (2004) studied
boundary layers in a cubic convection cell filled with water using a dyeing technique at
Ra = 1.3×109. They report a new coherent structure in the boundary layer, which they
suggest could be produced by pairs of counter-rotating vortices. In separate numerical
studies of turbulent convection, Kerr & Herring (2000) and Verzicco & Camussi
(2003) have investigated some statistical quantities of the boundary layer. However,
to our knowledge, dynamic boundary layer quantities such as near-wall viscous shear
tress and turbulent (Reynolds) shear stress have not been experimentally measured
in convective turbulence. This lack of experimental data has prevented quantitative
comparisons between the velocity boundary layer in thermal turbulent convection
with those in shear flow turbulence. Most experiments measured only one velocity
component in single-point measurements, and so statistical quantities concerning
the correlation between different velocity components and the velocity difference at
different positions have not been obtained.

1.5. Application of PIV in turbulent thermal convection

The technique of particle image velocimetry (PIV) is a convenient tool to directly
visualize and measure the two-dimensional flow field in a particular plane of interest
(Adrian 1991). In a PIV measurement one captures two consecutive two-dimensional
images of the seed particles using a charge-coupled device (CCD) camera and then
cross-correlates the two images to produce the displacement of each particle, from
which one obtains the velocity map. The main advantage of the PIV method is its
ability to follow the motion of a two-dimensional flow field. With the two-dimensional
time series data, one can obtain both the time-averaged and the dynamic properties
of the two-dimensional flow field.

In recent years, PIV has been used to measure the various properties of the
velocity field in turbulent Rayleigh–Bénard convection in different cell geometries.
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For example, Xia, Sun & Zhou (2003) measured the flow structure and statistical
properties of the velocity field in the bulk fluid in a rectangular cell over a wide range
of Ra (from 9 × 108 to 9 × 1011). Their results show that the driving mechanism of
the large-scale circulation is the buoyancy of the plumes instead of fluctuations or
Reynolds stress associated with the plumes. It was also found that an inner-core and
an outer-shell flow structure coexists in the system when Ra is larger than a critical
value and that the two structures have different rotation frequencies with distinct Ra-
scaling exponents. Burr, Kinzelbach & Tsinober (2003) measured statistical properties
of velocity field in a cubic cell for Ra = 1.61 × 109. Their results also suggests that
the LSC is not driven by turbulent Reynolds stress.

Sun, Xia & Tong (2005c) made a comprehensive study of the three-dimensional
structure of the flow field in an aspect-ratio-unity cylindrical cell, which revealed
how thermal plumes have synchronized their emissions and organized their motions
spatially between the top and bottom plates, leading to an oscillatory motion in
the bulk region of the fluid with a period equal to twice the plume’s cell-crossing
time. Sun, Xi & Xia (2005b) studied the flow dynamics in an aspect ratio Γ = 1/2
cylindrical cell. Their results show how the azimuthal motion of the quasi-two-
dimensional instantaneous flow structure produces a time-averaged three-dimensional
flow pattern featuring two toroidal rings near the top and bottom plates. Their work
also demonstrated that different flow states can indeed produce different global heat
transport in a turbulent convection system. Xi et al. (2006) studied the azimuthal
motion of the large-scale circulation in an aspect-ratio-unity cylindrical cell and
found that the azimuthal motion consists of erratic fluctuations and a time-periodic
oscillation. In high-resolution PIV measurements, Sun, Zhou & Xia (2006) obtained
real-space velocity structure functions and found that they do not follow the Bolgiano–
Obukhov scaling in both the central and the sidewall regions of the convection cell.
In a more recent study, they investigated the small-scale statistical properties of the
velocity circulation and found that the circulation is more sensitive to small-scale
anisotropy than the velocity structure functions (Zhou, Sun & Xia 2008). Recently,
Eidelman et al. (2006) studied the hysteresis phenomenon of the large-scale circulation
in turbulent convection using PIV.

1.6. Organization of the paper

In this paper, we study the properties of the thermal and viscous boundary layers
near the bottom plate of a rectangular cell. For the temperature field, both the
time-averaged and r.m.s. profiles are obtained near the bottom plate. For the velocity
field, high-resolution two-dimensional velocity measurements are made near the plate.
In particular, we study the time-averaged, statistical and dynamical quantities of
the viscous boundary layer. We also study the scaling properties of the temperature
and velocity r.m.s. profiles with distance from the horizontal plate. The remainder
of this paper is organized as follows. In § 2 we describe the experimental apparatus
and measurement methods. Section 3 presents the experimental results, which are
divided into nine subsections. In § 3.1 we present the measured temperature profiles
and the temperature-dependent fluid properties as functions of the distance from the
horizontal plate, which will be used to obtain the thermal boundary layer and the
viscous and Reynolds stresses. In § 3.2, the measured velocity profiles and the viscous
boundary layer thickness are presented. The viscous boundary layers based on two
different definitions are also discussed. In § 3.3, the scaling of the Reynolds number
Re with Ra is presented. In § 3.4, the scaling properties, with both Ra and Re, of
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two kinds of boundary layer thicknesses, one determined from the mean velocity
profile and the other determined from the r.m.s. velocity profile, are presented and
discussed. We also discuss the influence of the geometry of the cell on the boundary
layer scaling. In § 3.5 statistical properties (r.m.s. and skewness) of the velocity field in
the boundary layer region are discussed. In § 3.6 we present the scaling, with distance,
of the profiles of the temperature and velocity fluctuations in the mixing zone and
discuss the difference between power-law and logarithmic profiles. Section 3.7 presents
results of the viscous and Reynolds shear stresses distributions in the boundary layer
and discusses their relative contributions to the total shear stress as functions of
Ra. In § 3.8 we discuss the scaling, with both Ra and Re, of several boundary layer
quantities, such as the friction velocity, the friction coefficient, and the wall thickness.
Profiles of the mean and r.m.s. horizontal velocities normalized by wall units and
for different values of Ra are also presented, and their properties are discussed with
respect to those of classical shear flows. In § 3.9 we discuss possible implications of
the present results by extrapolating them to much higher values of Ra. We summarize
our findings and conclude in § 4.

2. Experimental apparatus and methods
2.1. The convection cell

The choice for the shape of the convection box is based on the following
considerations. For the most widely used cylindrical shape, the curved sidewall will
introduce distortions in the images viewed by the camera. Although this distortion
can be partly corrected by fitting a square-shaped jacket round the sidewall of the
convection cell, the jacket unavoidably limits the field of view in regions near the
top and bottom plates. For a cube-shaped cell, it is known that the mean flow
is confined in the diagonal plane of the box (Zocchi, Moses & Libchaber 1990;
Qiu & Xia 1998a, b), which means that the PIV method will measure only a
projection of the flow field. With these in mind, a rectangular shape is chosen for
the convection box. Another important reason is that the rectangular cell enables us
to achieve a very high resolution, because the shortest distance between the region
of interest (measuring area) and the camera lens can be achieved compared with
other shapes of comparable size. The length (L), width (W ), and height (H ) of the
cell is 25 × 7 × 24 (cm3). With this geometry, the large-scale flow is largely confined
in the plane with aspect ratio Γ =L/H � 1, which is the circulation plane of the
LSC, and the velocity in this plane will be the dominant component of the LSC
(Xia et al. 2003).

The convection cell has been described in detail previously (Xia et al. 2003). Here
we give only its essential features. The top and bottom conducting plates are made
with pure copper and their fluid-contact surfaces are plated with a thin layer of
gold. The sidewall is made of Plexiglas. The temperatures of the plates are monitored
by four embedded thermistors, two in each one. The top plate temperature was
maintained constant by a refrigerated circulator (Polyscience Model 9702) that has a
temperature stability of 0.01 oC. Two silicon rubber film heaters connected in series
are stuck to the back of the bottom plate to provide constant and uniform heating. A
DC power supply (Xantrex XFR 300-4) with 99.99% long-term stability was used to
heat the plate at a constant flux. The top and bottom parts of the cell are wrapped
with nitrile rubber sheets for thermal insulation. With this setup, the cell’s conducting
plates have temperature stability and uniformity better than 1% of the temperature
difference across the cell. It has been found that room temperature fluctuations could
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Figure 1. Sketch of the convection cell and the Cartesian coordinates used in temperature
and velocity measurements. The shaded region represents the PIV measuring area.

influence the flow pattern and velocity distributions in the cell. It is therefore important
that a constant-temperature environment be maintained. We achieved this by placing
the entire convection cell inside a thermostat box whose temperature matched the
mean temperature of the bulk fluid in the convection cell. The thermostat box reduces
heat leakage and maintains a constant mean temperature of the working fluid in
the cell so that it is not subjected to room temperature fluctuations. The constant
mean temperature of the bulk fluid also implies a constant Prandtl number Pr.
The temperature stability of the thermostat is better than 0.05 oC.

2.2. The PIV measurements

Figure 1 shows a sketch of the coordinates of the velocity measurements with respect
to the cell geometry. The origin of the coordinates is chosen to coincide with the
centre of the bottom plate. The x- and z-axes lie in the circulation plane of the large-
scale circulation; the y-axis is perpendicular to the LSC-plane and points inward.
The symbols u, v and w denote the instantaneous velocity components along the
x-, y- and z- directions, respectively. Near the bottom plate u is the main velocity
component. The PIV system consists of a dual neodymium-doped yttrium aluminum
garnet (Nd:YAG) laser operated at a power of 80 mJ per pulse, lightsheet optics, a
cooled CCD camera with 12-bit dynamic range and a spatial resolution of 1280 ×
1024 pixels, a synchronizer, and control software, which contains a PIV data analysis
package (TSI, Inc.). A laser lightsheet of thickness � 0.2 mm is used to illuminate
the seed particles in the plane of interest (the x, z-plane). The seed particles used in
the experiments are 2.89 µm diameter polyamid spheres (density 1.03 g cm−3). This
particle size is chosen such that its image roughly occupies the area of one pixel in
the CCD sensor, which is the optimal size for the present experiment (Xia et al. 2003;
Sun et al. 2005c).

The two-dimensional velocity map is obtained by cross-correlating two consecutive
images taken at a time interval ranging from several hundred to several thousand
µs according to the value of Ra and is optimally selected for the corresponding
flow speed. The selection criterion for the delay time is set such that most particles
move across several pixels during the time interval. To achieve more data points in
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the z-direction, we oriented the CCD in such a way that it has 1280 pixels in the
z-direction and 1024 pixels in the x-direction. Each two-dimensional velocity vector
is calculated from a subwindow (32 pixels × 32 pixels) that has 50% overlap with its
neighbouring subwindows (Adrian 1991), so each vector corresponds to a region of
16 pixels × 16 pixels and each velocity map contains 63 and 79 velocity vectors in the
x- and z-directions respectively. Because the number of pixels in the CCD is fixed,
the view area should be made as small as possible to achieve high spatial resolution.
By installing several extension tubes between the CCD and the lens, a rectangular
measuring area with dimensions x = 11.07 mm and z = 13.84 mm was achieved. The
spatial resolution is 0.17 mm in both the x- and the z-directions, which is smaller than
both the Kolmogorov scale and the thermal boundary layer thickness (η = 0.4 mm
and δth = 0.58 mm for the highest Ra = 2.5 × 1010) in the present experiment.

2.3. Experimental conditions and parameters

Water was used as the convecting fluid and the experiment was conducted at Pr = 4.3,
which corresponds to a mean bulk fluid temperature of 40.0 oC. The cell was levelled in
all measurements (better than 0.1o). By changing the temperature difference between
the top and the bottom plates, we varied Ra from 1.25×109 to 2.5×1010 while keeping
Pr constant. For each Ra, 30 000 vector maps were acquired at a sampling rate of 2.2
Hz in a single measurement of duration 3.79 h.

3. Results and discussion
3.1. Temperature profiles and fluid properties

The boundary layer in turbulent thermal convection is rather complex, because both
velocity and thermal boundary layers are present and they influence each other.
For example, the intermittent emission of thermal plumes (which are believed to be
detached from thermal boundary layers) will modify the viscous boundary layer, while
the shear of the horizontal velocity that sweeps over the plates helps to stabilize the
thermal boundary layer. Although the primary objective of the present work is to study
the properties of the viscous boundary layer, we also measured temperature profiles
near the plate, and hence the thermal boundary layer. Profiles of the mean temperature
and its fluctuations for each Ra (from 109 to 1010) were measured, mainly because
the viscous shear stress and Reynolds stress depend respectively on the viscosity and
density of the fluid, and these quantities have strong temperature dependences.

The experimental method and apparatus used in the temperature profile
measurements are similar to those described previously by Lui & Xia (1998) and
Wang & Xia (2003), except that the thermistor probe in the present case traverses
only vertically but not horizontally. We measured the mean temperature and its
fluctuations for different z along the central axis (x = y = 0) of the cell. In figure 2 we
show examples of the mean temperature and its fluctuation profiles at Ra = 1.07×1010.
As temperature in the bulk region is a constant of position, we measured only the
part of the temperature profile from the plate to z = 40 mm (the height of the cell
is 240 mm), and for clarity only the part between z = 0 and z = 20 mm is shown
in figure 2. It is seen that the mean temperature drops dramatically with increasing
distance from the bottom plate in a very limited region, and the temperature quickly
becomes constant outside the boundary layer region. As shown in figure 2(a), the
thermal boundary layer thickness δth is defined as the distance from the wall at which
the extrapolation of the linear part of the temperature profile meets the horizontal
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Figure 2. Typical mean temperature 〈T 〉 and r.m.s. temperature σT profiles
(Ra=1.07 × 1010). Definition of the thermal boundary layer thickness δth is also illustrated.
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Figure 3. Typical density ρ and dynamic viscosity μ profiles of the convecting fluid (water)
obtained from the mean temperature profile (Ra = 1.07 × 1010). Lines in the figure are data
smoothed with a negative exponential smoother.

line passing through the bulk temperature of the system. This definition is the same
as that in Lui & Xia (1998), which is based on the slope of the mean temperature
profile near conducting plate. The boundary layer thickness at this Ra (1.07 × 1010)
is δth = 0.75 mm based on this definition.

The Ra-scaling properties of the thermal boundary layer will be presented in § 3.4,
together with those of the viscous boundary layer. As shown in figure 2(b), the
r.m.s. increases with increasing z when z is very small and reaches a maximum, then
decreasing with increasing distance from the plate. The r.m.s. temperature (σT ) will be
discussed in detail in § 3.6. From the temperature profiles, we can also calculate the
density and viscosity profiles for different Ra using the published properties of water
(Yaws 1999). Figure 3 shows examples calculated from the mean temperature profile
in figure 2 (Ra = 1.07 × 1010). It is seen that both the density and viscosity of the
working fluid have strong position dependence in the region of the thermal boundary
layer (i.e. the region of steep temperature gradient). Obviously, local values of these
fluid properties will have to be used in the calculation of the position-dependent
viscous and Reynolds shear stresses.

3.2. Mean velocity profile and determination of the viscous boundary layer

We now present results from the velocity measurements. We first examine the velocity
field near the plate. Figure 4(a) shows an instantaneous two-dimensional velocity map
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Figure 4. Coarse-grained vector maps of the instantaneous (a) and time-averaged (b) velocity
field measured near the centre of the bottom plate (Ra = 5.3 × 109). The magnitude of the
velocity is coded in both colour scale and the length of the arrows in unit of mm s−1. Note that
a laminar boundary layer about 2 mm in thickness is apparent from both the instantaneous
and the time-averaged velocity fields.

measured at Ra = 5.3 × 109 and figure 4(b) shows the time-average of the same
velocity field taken over a period of 3.79 h (corresponding to 30 000 velocity frames).
In the present measurements, x spans from −5.36 mm to 5.36 mm, and z spans from
0 to 13.49 mm. Note that, to improve readability, both plots in figure 4 have been
coarse-grained (by combining every four vectors into one), so the apparent spatial
resolution in the figure is less than the actually measured one. From figure 4 it is seen
that the time-averaged velocity field in the boundary layer region is laminar while
the instantaneous velocity map shows velocity bursts much higher than the mean
value (notice the difference in the velocity scales in the two figures). In particular,
the large velocity burst in the centre of figure 4(a) presumably corresponds to the
emission of a thermal plume or a cluster of plumes. As the mean velocity and the
velocity fluctuations are found to be independent of the horizontal position x over
the range of the measurements, all quantities presented below are based on values
averaged along the x- direction over the width of the measuring area, which leads to
an increased statistical accuracy of the measured quantities.

Figure 5 shows the time-averaged horizontal and vertical velocities, U (z) = 〈u(z, t)〉
and W (z) = 〈w(z, t)〉, as functions of the vertical distance z. From the figure, we
can see that the main velocity component U (z) has the following characteristics: it
increases linearly close to the plate, and after reaching the maximum value Umax it
decays as z increases towards the central region of the cell. Note that W (z) is zero
at z = 0 because of the impermeability condition, and U (z) is zero at z = 0 because
the non-slip boundary condition holds in this system, at least the slip length can
be neglected. There are quite a few definitions of the viscous (or velocity) boundary
layer thickness, among which two are commonly used (Schlichting & Gersten 2000).
In the first the boundary layer thickness δυ is defined as the distance from the wall
at which the extrapolation of the linear part of the horizontal velocity profile meets
the horizontal line passing through the maximum horizontal velocity Umax . As shown
in figure 5, the boundary layer defined in this way gives δυ =2.30 mm for the given
Ra. An alternative definition of the boundary layer thickness is the distance from the
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Figure 5. Profiles of the time-averaged horizontal U (◦) and vertical W (�) velocities measured
near the bottom plate (Ra = 5.3 × 109). The solid and dashed lines illustrate two different
definitions of the velocity/viscous boundary layer.

wall at which the velocity is 99% of its maximum amplitude. The rationale for this
second definition is that in traditional shear flows the transition from boundary-layer
flow to outer flow is continuous, so that it is difficult to find the position of maximum
velocity. As can be seen from figure 5, in the Rayleigh–Bénard system the position
of maximum velocity can be easily determined. So we revise the second definition of
boundary layer thickness. The thickness δm is now defined as the distance between
the wall and the position at which the horizontal velocity U (z) is maximum. It is seen
from figure 5 that the boundary layer so defined gives δυ = 5.19 mm for the given
Ra. As shown by figure 4, a ‘boundary layer thickness’ of about 2 mm (hence δυ)
is physically more reasonable and therefore δυ seems to be a better choice. In § 3.4
we will discuss the scaling properties of the two boundary layer length scales and
decide which of the two definitions of thickness will be adopted in our study. Figure 6
plots the velocity profiles for eight different values of Ra. From the un-normalized
profiles shown in figure 6(a) we can see that the shape of the profiles is rather
similar even though their amplitudes are not equal. Figure 6(b) plots the normalized
profiles in which U (z) is normalized by the maximum horizontal velocity Umax(Ra)
and the distance z from the wall by the viscous boundary layer thickness δυ(Ra). It
shows clearly that all profiles for different Ra collapse onto a single curve quite well,
suggesting a universal profile of the laminar boundary layer for different values of Ra.

3.3. Scaling of the Reynolds number

Because the LSC is the largest flow structure in the system, its velocity may be used to
define the Reynolds number of the system. The key to the definition of the Reynolds
number Re is the selection of a typical velocity of the system. Here we use the
velocity Umax where the horizontal velocity is maximum in the profile (see figure 5),
i.e. Re = UmaxH/ν. In Sun & Xia (2005) it was shown that near the sidewall of the
convection cell there exist occasional flows opposite to the overall LSC flow direction,
which could be caused by some energetic plumes travelling in the ‘wrong direction’
along the sidewall. When this counterflow becomes significant it reduces the value of
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Figure 6. (a) Time-averaged horizontal velocity profiles measured at eight different Ra, from
bottom to top: Ra = 1.25 × 109, 2.34 × 109, 3.43 × 109, 5.30 × 109, 7.53 × 109, 1.07 ×
1010, 1.52 × 1010 and 2.02 × 1010. (b) Profiles in (a) normalized by their respective maximum
velocity Umax(Ra) and viscous boundary layer thickness δυ (Ra).

the mean velocity, which will then no longer be representative of the strength of the
LSC. In such a case it has been shown that the proper value to use for the Reynolds
number is the most probable value of the velocity distribution (Sun & Xia 2005). In
the present case, however, the measurements were made near the bottom plate of the
cell and no significant counterflow exists. This can be seen from the histograms of
u measured at the position of maximum velocity, which are shown in figure 7 for
several values of Ra. So here we simply use the time-averaged maximum velocity
Umax for the Reynolds number Re.

In figure 8 we show Re vs Ra in a log-log plot, where the solid line represents the
best power-law fit Re = 0.0184Ra0.55±0.01. The inset of the figure is a compensated plot
of the same data, which shows that 0.55 is indeed an excellent exponent to describe
the data. We are not aware of any theoretical model that predicts a Reynolds number
scaling exponent larger than 0.5, but previous experiments have also found a value
larger than 0.5 (although for different Pr fluids). For example, Lam et al. (2002)
found in a cylindrical cell that the same exponent varies from 0.5 to 0.68 with Pr
varying from 51 to 1027. It should also be mentioned that the scaling of Re with
Ra has also been highlighted, although focused on different aspects, in several recent
papers (Brown, Funfschilling & Ahlers 2007; Xia 2007). Thus, further studies, both
experimental and theoretical, are needed to settle this issue.

3.4. Scaling of the boundary layer thickness

We now discuss the scaling of the boundary layer thickness with both the Rayleigh
number Ra and the Reynolds number Re, and compare results based on the two
different definitions of the boundary layer thickness as discussed in § 3.2. Figure
9(a) plots the Ra-dependence of the boundary layer thicknesses normalized by
the cell height H . The solid circles represent δυ/H and the open circles represent
δm/H . The solid lines in the figure represent best power-law fits to the respective
data and give δυ/H = 4.95Ra−0.27±0.01 and δm/H = 10.84Ra−0.27±0.01. Figure 9(b) plots
the Re-dependence of δυ/H and δm/H with the same symbols. Again, the solid
lines are power-law fits to the respective data, with δυ/H =0.64Re−0.50±0.03 and
δm/H = 1.43Re−0.50±0.02. It is seen that the two boundary layer thicknesses defined
differently have the same scaling behaviour with respect to both Ra and Re but their
magnitudes differ by roughly a factor of 2, with δm being the larger. As discussed in
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inset plots a compensated Reynolds number ReRa−0.55 vs Ra.

§ 3.2, figure 4 suggests that δυ is a better choice and it is also the one that has been
used most frequently in thermal convection studies (Belmonte et al. 1993; Xin et al.
1996; Xin & Xia 1997; Qiu & Xia 1998a, b), so it will be adopted as the velocity
boundary layer in the present study.

The Re-scaling exponent of −0.5 of the velocity boundary layer is in excellent
agreement with the predictions for Blasius-type boundary layers. However, the result
appears to be inconsistent with previous experimental results obtained in cylindrical
and cubic cells, which give δυ ∼ Ra−0.16 (Xin et al. 1996; Xin & Xia 1997; Qiu &
Xia 1998b; Lam et al. 2002). Using the scaling relation Re ∼ Ra0.5 reported in those
studies implies δυ ∼ Re−0.32. While we do not know the exact reason(s) for this
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Figure 10. Sketches of the large-scale circulation in different cell geometries.
(a) Cylindrical cell. (b) Cubic cell. (c) Rectangular cell.

discrepancy, we note that the viscous boundary layer is created by the shear of the
LSC, which is different in different cell geometries. In the case of a cylindrical cell,
it is known that the orientation of the LSC oscillates azimuthally (Sun et al. 2005b;
Brown, Nikolaenko & Ahlers 2005; Xi et al. 2006) so that a steady shear is not always
present. In the cubic cell the LSC near the horizontal conducting plate is along the
diagonal. While it is not known whether the LSC also has orientational oscillations
in the cubic geometry, it was found in Qiu & Xia (1998b) that there exist secondary
flows that sometimes have opposite directions to the main LSC direction and these
secondary flows could affect the stability of the main LSC. Recently, Zhou, Sun & Xia
(2007b) have made local temperature and velocity measurements in a cell of similar
geometry as the present one (81 × 20 × 81 cm3 vs 25 × 7 × 24 cm3). They observed no
velocity oscillations and only weak temperature oscillations near the bottom plate;
while near the sidewall both velocity and temperature oscillations were observed,
though much weaker than those seen in cylindrical cells. In figure 10 we illustrate the
flow patterns of the LSC near the bottom plate for the various geometries and it is
seen that the present rectangular geometry has the most stable flow structure among
the three geometries. (Previous measurements have shown that the flow will align
with the largest diagonal of the system when Ra becomes very high (Xia et al. 2003).
In the present system, the depth of the cell is rather small comparing to its length, so
this is a small effect. For simplicity, this is not illustrated in figure 10.) In the classical
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Figure 11. (a) Profile of the r.m.s. (σu) horizontal velocity component measured at
Ra = 5.3 × 109, the lines are used to illustrate the definition of the r.m.s. velocity-based viscous
boundary layer thickness δσ . (b) Ra-dependence of δσ (squares), thermal boundary layer
thickness δth (triangles) and viscous boundary layer thickness δυ (open circles). The fitting
results are δσ /H = 16.5Ra−0.37±0.10, δth/H =6.10Ra−0.32±0.05, and δυ/H = 4.95Ra−0.27±0.01,
respectively. (c) Ra-dependence of the Reynolds number Re σ = σmax

u H/ν based on maximum
r.m.s. velocity, and the power-law fit gives Reσ = 0.018Ra0.50±0.04. (d) Reσ -dependence of δσ .
The power-law fit gives δσ /H =0.69Re−0.72±0.14

σ .

theory of boundary layers, including the Blasius boundary layer, a steady shear is
considered. This is also the case considered in the GL theory. If the smaller exponent
measured in the cylindrical and cubic cells is indeed due to an unsteady shear, then a
modification of the boundary layer theory for the case of unsteady shears would be
needed.

In addition to the boundary layer thickness δυ that is defined based on the mean
horizontal velocity profile, another length scale can also be defined based on the profile
of the horizontal r.m.s. velocity σu, which may be called the r.m.s. velocity boundary
layer thickness. The definition of this length scale, δσ , is illustrated in figure 11(a),
which is similar to that of δυ . This scale was first introduced by Xin & Xia
(1997), in which it was found that δσ ∼ Ra−0.25±0.02 in a cylindrical geometry with
aspect ratio varying from 0.5 to 4.4. In a later study, Qiu & Xia (1998b) found
that δσ ∼ Ra−0.22±0.04 in a cubic cell. It was also found that in both of these
geometries the magnitude of δσ is intermediate between the viscous boundary layer
δυ and the thermal boundary layer δth. In figure 11(b) we show the Ra-scaling of the
r.m.s. velocity boundary layer thickness δσ (squares) from the present experiment. For
comparison, δυ (circles) and δth (triangles) from the present work are also shown. Here,
the thermal layer thickness δth is determined from the measured mean temperature
profiles as discussed in § 3.1. The power-law fits give δσ /H = 16.5Ra−0.37±0.10 (dashed
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Quantity Ra range Pr Geometry Bottom Sidewall Source

δυ 108 ∼ 1010 ∼ 7 Cylindrical −0.16 a
107 ∼ 1011 ∼ 7 Cylindrical −0.16 b
108 ∼ 1010 ∼ 7 Cubic −0.16 −0.26 c
108 ∼ 1010 6−1027 Cylindrical −0.16 d
109 ∼ 1010 4.3 Rectangular −0.27 e

δσ 107 ∼ 1011 ∼ 7 Cylindrical −0.25 b
108 ∼ 1010 ∼ 7 Cubic −0.26 −0.38 c
109 ∼ 1010 4.3 Rectangular −0.37 e

Table 1. Exponents of scaling, with Ra, for the viscous boundary layer thickness (δυ ) and the
r.m.s. velocity-based boundary layer thickness (δσ ) for different geometries. The sources are:
a. Xin et al. (1996); b. Xin & Xia (1997) (aspect ratio Γ = 0.5, 1, 2 and 4.4.); c. Qiu & Xia
(1998a,b); d. Lam et al. (2002); e. present work.

line) and δth/H = 6.10Ra−0.33±0.05 (solid line) (and δυ/H = 4.95Ra−0.27±0.01 as already
discussed).

Several features are worthy of note. The first is that both the magnitude and the
Ra-scaling exponent of δσ are very close to those of the thermal layer. In fact, within
the experimental uncertainties, δσ and δth may be regarded as the same. In contrast,
in the cylindrical and cubic geometries, the magnitude of δσ is intermediate δυ and
δth. We think this suggests a stronger coupling between the temperature and velocity
fluctuations in the rectangular geometry, but do not understand why this should be
the case. The second feature is that the scaling exponent of δσ , like that of δυ , is
quite different from the other two geometries. It is interesting that the exponents of
δσ and δυ for the rectangular case are the same (again within experimental error) as
those found near the sidewall of a cubic cell (Qiu & Xia 1998a) and that for all three
geometries the absolute value of the exponent of δσ is always larger than that of δυ

by 0.1.
For ease of reference, we summarize the exponents of the two boundary layer

length scales in table 1. They were measured near both the bottom plate and sidewall
for the various geometries (where applicable) and over different ranges of Ra and Pr.
The maximum value in the r.m.s. velocity profile, σmax

u may also be used to define an
r.m.s. velocity-based Reynolds number: Reσ = σmax

u H/ν. The Ra-dependence of Reσ

is plotted in figure 11(c), where the solid line represents a power-law fit to the data:
Reσ = 0.018Ra0.50±0.04. This result is consistent with similar results found for the other
two geometries (Xin & Xia 1997; Qiu & Xia 1998a, b). In figure 11(d) the dependence
of δσ on Reσ is plotted, which is obtained using the relation between Reσ and Ra.
The power-law fit gives δσ /H = 0.69Re−0.72±0.14

σ .

3.5. Statistical properties of the velocity field in the boundary layer

As already mentioned, to our knowledge there are no experimental measurements of
the statistical properties of the velocity field inside the boundary layer in turbulent
thermal convection. A careful and comprehensive analysis of the statistical properties
of the velocity field, such as its r.m.s. and skewness values may thus shed light on the
complex turbulent convection problem.

Figure 12 shows the time series of both the horizontal component u(t) (left panels)
and the vertical component w(t) (right panels) of the velocity, measured at various
positions from the plate. The corresponding velocity histograms are shown in figure 13.
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components measured at Ra = 5.3×109 and at x =0 and different distances z from the bottom
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Figure 13. Histograms of (a) the horizontal u(t) and (b) vertical w(t) velocity components at
various distances from the bottom plate measured at Ra = 5.3 × 109.

The measurements were made at Ra =5.3 × 109. At this value of Ra, the thermal
boundary layer thickness δth ≈ 0.9 mm, the velocity boundary layer thickness δυ = 2.3
mm and the maximum velocity Umax = 11.87 mm s−1 (at z = 5.19mm). The results
shown in figures 12 and 13 therefore correspond to several typical positions: (i) inside
the thermal boundary layer, (ii) around the thermal boundary layer, (iii) around the
viscous boundary layer; (iv) at the position of the maximum velocity; and (v) far away
from the boundary layers. The figures show that overall the horizontal velocity is the
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dominant component, and that for positions near or below the thermal boundary
layer it is skewed toward higher velocity values. But for positions near or above
the viscous boundary layer the horizontal velocity is skewed toward smaller velocity
values (i.e. negative skewness). The vertical velocity, on the other hand, shows similar
behaviour at the different positions, i.e. fluctuates around zero with no significant
asymmetry and the amplitude of fluctuations increases with increasing distance from
the plate.

Figure 12(a) shows the horizontal velocity very close to the plate (z = 0.35 mm).
The position is well within both the thermal and velocity boundary layers and the
velocity amplitude is very small but there are intermittent bursts toward the positive
side (i.e. the velocity is skewed toward the mean flow direction).

Around the position of the thermal boundary layer (figure 12b, z = 0.87 mm), we
can see clearly that there are quite number of velocity bursts toward the direction of
the mean flow, in addition to the increased fluctuations. It is generally believed that
plumes are produced as a result of thermal boundary layer detachments or instabilities.
So it is reasonable to associate the observed velocity bursts at thermal boundary layer
with emissions of thermal plumes. Note that the number of bursts (plumes) in the
horizontal velocity is much larger than in the vertical velocity measured at the same
position (figure 12g). This implies that the plumes are swept predominantly in the
horizontal direction after they are emitted.

When z is further increased to 2.25 mm (figure 12c), which corresponds to the
position of the velocity boundary layer, both the mean and the standard derivation of
the velocity become much larger than at the previous two positions. At z = 5.19 mm
the mean velocity is maximum, and both the time series and the histogram exhibit the
same features as measured far away from the boundary layer (z = 10.38 mm). They
also have the same characteristics of the LSC in the interior of the cell obtained
in a previous study (Xia et al. 2003). A notable feature of the horizontal velocity
histograms shown in figure 13(a) is that they appear to be the superpositions of
two contributions, resulting in two peaks. This is most likely caused by a fluctuating
boundary layer so that the measurement point is sometimes inside and sometimes
outside the boundary layer. Obviously, the relative weightings of the two components
change with the measurement position. To disentangle these two components from
the measured velocity data requires more systematic measurement and will be the
subject of future studies.

The statistical properties of the velocity may be characterized more quantitatively
by its root-mean-square (r.m.s.) value and its skewness, which are shown in figure
14. Figure 14(a) plots the velocity r.m.s. σu (solid circles) and σw (open circles)
versus the normalized distance z/δυ . In figure 14(b) the skewness profiles, also versus
z/δυ , are plotted, where the solid squares represent the horizontal velocity skewness
Su ≡ 〈(u−〈u〉)3〉/(〈(u−〈u〉)2〉)3/2 (〈· · ·〉 denotes the time-average) and the open squares
represent the vertical velocity skewness Sw ≡ 〈(w − 〈w〉)3〉/(〈(w − 〈w〉)2〉)3/2 (for σw we
discuss here only its general features; its other properties, together with the profiles
of the temperature r.m.s., will be discussed in the next subsection). Figure 14 shows
that initially both σu and σw increase with increasing distance from the plate, with σw

reaching its maximum value around 0.5δυ and σu around 0.7δυ , and then decrease as
z increases. Outside δυ , the r.m.s. was influenced by the outer flow. The skewness of
the horizontal velocity Su is seen to reach its maximum value very near the wall (even
inside the thermal boundary layer). It then decreases to a negative value near the
viscous boundary layer and levels off afterwards. This may be explained by the fact
that very close to the wall, fluctuations against the mean flow are severely restricted
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Figure 14. (a) The normalized r.m.s. σ and (b) skewness S profiles measured at Ra = 5.3×109.
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Figure 15. (a) The measured r.m.s. (σu) horizontal velocity profiles for different values of
Ra, from bottom to top: Ra = 2.34 × 109, 3.43 × 109, 7.53 × 109 and 1.07 × 1010. (b) The
normalized r.m.s. (σu/σ

max
u ) vs normalized z (= z/δσ ) for the same Ra as in (a).

due to the strong shear. The skewness of the vertical velocity Sw is seen to remain
more or less constant over the same distance. This feature can also be seen from the
histograms of w (figure 13).

Next we examine the evolution of the horizontal r.m.s. and skewness velocity
profiles with Ra. Figure 15(a) plots several profiles of σu for various values of Ra and
figure 15(b) shows the same profiles normalized by the maximum r.m.s. velocity σmax

u

and the r.m.s. velocity boundary layer δσ (note that in figure 14, z is normalized by δυ

as both horizontal and vertical components are presented, and here z is normalized by
δσ which is based on the horizonal r.m.s. velocity). The nearly perfect collapse of the
profiles shows that δσ is a relevant length scale for the r.m.s. velocity field. In figure 16
we show the evolution of the normalized Su profiles with Ra. An interesting feature
is that, as Ra increases, a dip (most negative Su) develops near the viscous boundary
layer thickness and a hump (the value of Su close to zero) also develops. This feature
appears to emerge for Ra � 7.5 × 109 but both the position of the dip (∼δυ) and that
of the hump (∼2.5δυ) appear to be insensitive to Ra once they appear. It is not clear
what causes this, but we note that around Ra � 7.5 × 109 the single-roll LSC splits
into an inner-core and an outer-shell structure with different rotating frequencies and
that the elliptical circulating roll also changes its orientation by 90◦ (Xia et al. 2003).
If these features are indeed related to each other, then it means that a structural
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Figure 16. The evolution of the skewness Su profiles with Ra.

change of the bulk flow field can influence the statistical properties of the velocity
field in the boundary layer.

3.6. Scaling of the profiles of the temperature and velocity fluctuations
in the mixing zone

An issue of considerable interest concerns the properties of the profiles of the
temperature and velocity fluctuations. The scalings of these fluctuations with distance
from the boundary are intimately related to heat transfer from the plates and various
models make very different predictions for the related scaling behaviour. In some of
the models, the r.m.s. value σT of the temperature and the r.m.s. value σw of the
vertical velocity have been predicted to vary with the distance z from the horizontal
wall as power laws, i.e. σT ∼ zα and σw ∼ zβ . For example, in the classical theory for
atmospheric boundary layers, Priestley (1959) has predicted the exponents α = − 1/3
and β =1/3. In other models, logarithmic profiles have been suggested. As pointed
out by Adrian (1996), the two versions of the mixing zone model by Castaing et al.
(1989) entail different behaviours for σT and σw . In the first scenario (referred to as the
λ-I theory by Adrian), velocity scales in the thermal boundary layer and convective
central core were assumed to be the same and it was shown that σT follows a power
law with α = −1/2 while σw scales logarithmically with the distance (Adrian 1996). In
the second scenario (the so-called λ-II theory), it was assumed that the characteristic
temperature scales in the thermal boundary layer and in the central core are the same
and it was shown that both σT and σw follow logarithmic laws.

Both the classical predictions of Priestley and the predictions of the mixing-zone
theory have been tested experimentally in previous studies. But the results have
been mixed. For example, Townsend (1959) found for convective motions of air in
open-topped box heated from below that α = − 0.6; Belmonte et al. (1993, 1994)
and Tilgner et al. (1993) measured temperature profiles in RB convection cells filled
with water and pressurized SF6 respectively and found that α = − 0.8 (water) and
α = − 0.72 (SF6). In an RB experiment using a rectangular cell filled with water,
Fernandes & Adrian (2002) reported logarithmic profiles for both σT and σw . But
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Figure 17. Left panels: Profiles of the normalized temperature r.m.s. σT /
T versus vertical
distance in log-log (a) and semi-log (c) plots; circles: Ra = 5.3×109; triangles: Ra = 1.07×1010.
The arrow on the left indicates the position of the thermal boundary layer and the arrow on
the right indicates the boundary between the mixing zone and the convective central core (for
Ra = 1.07 × 1010). Right panels: (b) The Ra-dependent exponent α for the power-law profile
and (d) the Ra-dependent slope α′ for the logarithmic profile.

because the scatter of their data, their σT profiles could be fitted to a power law with
exponent α between −1/2 to −1/3. Furthermore, the highest Ra reached in their
experiment is only 2 × 109, which does not seem to be high enough (see discussion
below). More recently, du Puits et al. (2007) conducted an RB convection experiment
using air and found a power-law profile for σT and that −0.30 > α > −0.42 which
depends on both Ra and Γ . But this dependence on Γ is probably due to the fact that
in their experiment Ra and Γ were changed simultaneously by varying the cell height.
Thus, it is seen that even for the temperature r.m.s. for which most experiments found
a power-law behaviour, no universal value for the exponent has emerged. For the
velocity r.m.s. profiles, experimental results are more scarce.

With both the temperature and vertical velocity r.m.s. profiles measured in the
present work, we are in a position to systematically examine their scaling properties
with the vertical height from the horizontal plate and also their Ra-dependent
behaviour. Before looking for the power-law or logarithmic behaviours, we should
first bear in mind the regions in which these laws are predicted to hold. For example,
Priestley (1959) suggested that the power-law behaviour for σT and σw should be
present in a region sufficiently far away from the plate, i.e. outside the boundary
layer. If it is outside the boundary layer but not in the convective core, this region
should be in the so-called ‘mixing zone’ proposed by Castaing et al. (1989). So it is
the profile properties in the mixing zone that we shall focus our attention on. We
examine the temperature data first. Figures 17(a, c) plot the profiles of the normalized
temperature r.m.s. σT /
T versus the normalized vertical distance z/H from the
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bottom plate on both log-log (a) and semi-log (c) scales. For clarity, only data for two
values of Ra are shown. In both plots the arrow on the left indicates the boundary
between the thermal boundary layer and the mixing zone and the arrow on the right
separates the mixing zone and the convective central core, the thermal boundary layer
has been determined in § 3.1.

The mixing zone is determined based on the properties of the ‘plus’ and ‘minus’
temperature skewness profiles in a previous study (Zhou & Xia 2002). This result has
been confirmed recently in a study of the geometrical and mixing properties of thermal
plumes in which it was shown that the mixing zone can be quantitatively defined as
the overlap region of the profile of the vertical vorticity fluctuations and profile of
the mushroom-like thermal plumes and that the mixing zone is a region characterized
by strong fluctuations of the vertical vorticity (Zhou, Sun & Xia 2007a). Figure 17(b,
d) shows the Ra-dependence of the exponent α for the power-law profiles and the
slope α′ for the logarithmic profiles. The r.m.s. profiles in figure 17(a, c) show clearly
that temperature fluctuations reach their maximum value just outside the thermal
boundary layer and that a scaling range falls within the mixing zone. Figure 17 also
shows that both the power-law and the logarithmic dependence can be fitted to the
measured temperature r.m.s. profiles to some degree. Although the power-law fitting
may be slightly favoured due to the fitting quality and the range of length scale over
which it can be fitted, for the given experimental resolution we cannot definitively
conclude which is a better choice. Also note that the exponent α for the power-law
changes from −0.6 to −0.77 and the slope α′ for the logarithmic profile also changes
from −0.025 to −0.017. The variation of the power-law exponent, although not large
but nonetheless beyond the experimental uncertainties, suggests a lack of universality
for the profiles of different Ra. In this respect, our result is similar to that of du Puits
et al. (2007) that α changes with Ra, although values of the exponent differ a lot in
the two experiments and our result is definitely different from the classical value of
−1/3 predicted by Priestley. On the other hand, our exponent values are comparable
to those found by Tilgner et al. (1993) in water (−0.8) and in SF6 (−0.72).

Figure 18 shows the results for the profiles of the normalized vertical velocity
r.m.s. σw/Umax (note that one of these has been shown in figure 14 on a linear
scale). The structure of the figure is similar to figure 17. Unlike in figure 17, here
the arrow denotes the position of the viscous boundary layer. Because the velocity
measurements were made only near the boundary layer region, the upper boundary
of the mixing zone that separates it from the convective central core is not covered by
the data. It is seen that here the fluctuations of the vertical velocity experience a local
minimum at the boundary between the viscous boundary layer and the mixing zone.
With regard to the scaling behaviour, the situation here is no less inconclusive than
the temperature case. Both power-law and logarithmic fit appear to have comparable
quality and both the power-law exponent β (between 0.25 and 0.67) and the slope
β ′ (from 0.15 to 0.04) of the logarithmic profile vary a lot over the range of Ra
spanned in the experiment. So here again, we cannot favour either the power-law
profile or the logarithmic one. A possible reason is that the value of Ra reached in
the present experiment is not high enough for σT and σw to exhibit a sufficiently
wide scaling range so that different behaviour may be distinguished. One interesting
feature however, is that at large Ra the exponent β appears to be approaching an
asymptotic value which is smaller than Priestley’s classical value of 1/3. As our last
data point is already at the largest achievable Ra of the present apparatus, this trend
can only be verified by future experiments.
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3.7. Shear stress distribution in the boundary layer

From the Reynolds number dependence of the boundary layer thickness we have
found that boundary layer is laminar and that it satisfies the Blasius condition in
the present range of Rayleigh number. To determine when the laminar boundary
layer will change to a turbulent one we examine the relative contributions of the
viscous and Reynolds stresses to the total shear stress in the boundary layers. The
viscous stress measures momentum transfer in the boundary layer due to viscosity,
whereas the Reynolds stress measures momentum transfer due to turbulent velocity
fluctuations. In other words, if the boundary layer is dominated by the viscous shear
stress, it is laminar. On the other hand, if the Reynolds shear stress dominates, then
the boundary layer is turbulent. The viscous shear stress is defined as μdU/dz, where μ
is the dynamic viscosity. As μ has a strong dependence on the distance z from the plate
because of the steep temperature gradient in the boundary layer, we write the viscous
shear stress τν = μ(z)dU (z)/dz, where μ(z) and U (z) are z-dependent viscosity and
velocity. The Reynolds (or turbulent) shear stress is defined as τR = −ρ(z)〈u′(z)w′(z)〉,
where ρ(z) is the z-dependent density, and u′ and w′ are the fluctuations of the x and
z components of the velocity respectively. The total shear stress is then τ (z) = τν + τR .

Figure 19 plots the profiles of the viscous shear stress and Reynolds stress
components for Ra = 5.3 × 109. We can clearly see that the Reynolds stress τR

is near zero and the viscous shear stress τν is maximum at the plate because of the
large velocity gradient dU/dz. So the total stress τ (z) at the wall τw (= τ (0)) comes
almost entirely from the contribution of the viscous shear stress. As one moves away
from the plate, the velocity gradient becomes smaller and the viscous shear stress
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Figure 19. Viscous stress τν (solid circles) and the Reynolds stress τR (open circles) as
functions of the normalized distance from the plate (Ra = 5.3 × 109).

τν decreases to a negligible value. The Reynolds shear stress τR , on the other hand,
increases from zero to a positive value with increasing z, and τR reaches a maximum
at z � 0.5δν , then decreases with further increase in z. The Reynolds shear stress τR

is around zero when z is around 2δν , it becomes negative in the outer flow with effect
of thermal plumes and large-scale flow. It is also seen clearly from the figure that
τR < τν within and around the boundary layer. This suggests that the momentum
transfer in the boundary layer is dominated by viscous diffusion rather than turbulent
fluctuations, which is consistent with the laminar boundary layer found above. We
may also compare the relative weights of the viscous stress and the Reynolds stress by
examining their respective ratios to the total shear stress, i.e. τν/τ and τR/τ . Figure 20
plots on a semi-log scale the Ra-dependence of τν/τ and τR/τ measured at the viscous
boundary layer thickness δυ . The figure shows that as Ra increases the contribution
of the viscous stress decreases while that of the Reynolds stress increases. But at the
highest value of Ra reached in the experiment the viscous stress is still larger than
the Reynolds stress. On the other hand, the figure suggests that a crossover will occur
around Ra = 3 × 1010 if the present result is extrapolated. This would imply that
around this Ra half of the momentum transfer in the boundary layer will be made by
viscous diffusion and the other half by turbulent fluctuations, and that above this Ra
turbulent fluctuations will become the dominant mechanism for momentum transfer.
Thus Ra � 3 × 1010 may be regarded as the onset value for the boundary layer to
become turbulent. We stress, however, that at this Ra the boundary layer still cannot
be considered as turbulent.

3.8. Scaling properties of boundary layer quantities

The universal laws of boundary layers in systems such as pipe flows have been well-
studied theoretically, numerically and experimentally (Eggels et al. 1994; Schlichting &
Gersten 2000; Shang 2002). Assuming that the boundary layer in thermal convection
has similar characteristics as in classical shear flows, Shraiman & Siggia (1990) and
Siggia (1994) derived the Ra dependence of Nu and Re as Nu ∼ Ra2/7 and Re
∼ Ra3/7[2.5ln(Re) + 6.0]. They assumed that the velocity in the boundary layer has
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Figure 20. Ra-dependence of the viscous stress (solid circles) and the Reynolds stress (open
circles) normalized by the total shear stress at the position of the viscous boundary layer.

a logarithmic region, which leads to a logarithmic correction to the Ra-dependence
of Re. However, Tilgner et al. (1993) found that the distance between the edge of the
viscous sublayer and the point of maximum velocity is too small to determine whether
an intrinsically logarithmic profile follows the linear region. Xin et al. (1996), Xin &
Xia (1997) and Qiu & Xia (1998b) also found no signs of logarithmic profiles in their
direct velocity measurements over a wide range of Ra. As most of the previous
studies were focused on mean velocity measurements with very limited resolution, the
wall properties cannot be determined. So it is not possible to compare the obtained
boundary layer properties with those from classical shear flows.

With the measured near-wall high-resolution velocity field, we are now in a position
to check the wall properties in turbulent thermal convection. We first consider the
scalings of four basic wall quantities with both Ra and Re. These are the wall
shear stress τw = τ (z)|z=0, which is just the viscous shear stress at the wall (plate) as
the Reynolds shear stress vanishes there; the friction velocity uτ = (τw/ρo)

1/2; the
viscous sublayer (or the wall thickness) δw = νo/uτ ; and the skin-friction coefficient
cf = τw/(ρoU

2
max). Here ρo ≡ ρ(z)|z=0 and νo ≡ ν(z)|z=0. Figure 21 shows the scaling of

these quantities with Ra. Reasonably good scalings are seen for all these quantities,
except perhaps cf . We are not aware of any theoretical prediction for the Ra-
scaling of these quantities in turbulent thermal convection. So we examine the
scaling of these quantities with the Reynolds number, for which comparison may
be made with other types of flows. These are shown in figure 22, where Re is
based on the maximum velocity Umax defined in § 3.3. It is seen that the wall shear
stress τw scales as Re1.55, the friction velocity uτ scales as Re0.8, and the viscous
sublayer δw scales as Re−0.91. For a laminar boundary layer over a flat plate, the
theoretically predicted ‘classical’ exponents for these quantities are 3/2, 3/4, and −1
(apart from a logarithmic correction), respectively (Schlichting & Gersten 2000). Thus
the experimental exponents are close to, but nevertheless different from, the classical
ones. The differences may be a reflection of the fact that in the present case a thermal
boundary layer with intermittent emission of plumes is nested within the viscous
layer. If this is the case, then the small differences imply that the presence of a
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Figure 21. The Ra-dependence of (a) the wall shear stress τw , (b) the friction velocity uτ ,
(c) the wall thickness (viscous sublayer) δw , and (d) the friction coefficient cf .

thermal boundary layer does not significantly modify the time-averaged quantities of
the classical laminar layer in the present range of Ra and Pr.

For the friction coefficient cf , the scaling exponent of −0.34 differs significantly
from the theoretical value of −1/2. But with the poor quality of the power-law
scaling, it is difficult to attach much importance to this discrepancy. In a numerical
study of thermal convection in a cylindrical cell with Pr matching that of helium gas,
Verzicco & Camussi (2003) found that cf computed over all solid surfaces shows
a scaling consistent with Re−1/2, while cf computed only over the horizontal plates
shows a change in slope at Re around a few thousand. In the present case, the
measured cf is also seen to change slope at Re ∼ 5000, although the Re range in each
part is rather narrow. Whether this feature in the two cases is related requires further
investigation. The overall conclusion from the above is that, despite the presence
of a thermal boundary layer with sharp temperature gradient, the (time-averaged)
near-wall quantities within the viscous sublayer in turbulent thermal convection do
not differ significantly from the classical case of a laminar layer over a flat plate.

To further compare the present system with classical boundary layers, we examine
velocity profiles in terms of the wall units. Figure 23 shows the normalized mean
horizontal velocity profiles for four different values of Ra in a semi-log plot, here
U+ = U (z)/uτ and z+ = z/δw . The two vertical dashed lines indicate the positions
of the thermal boundary layer δth, which varies from z+ = 2 to 4 from high to low
values of Ra. We can clearly see that a viscous sublayer obeying U+ = z+ exists
within the velocity boundary layer, despite the presence of the thermal boundary
layer. However, a departure from the linear relation can be observed near the edge
of the viscous sublayer, i.e. z+ = 5. This deviation may be caused by the emission
of thermal plumes, since the region is just outside the thermal boundary layer as
indicated in the figure. From the figure it is also evident that a logarithmic region is
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Figure 23. Measured horizontal velocity profiles normalized by wall units for four different
Ra. The two vertical dashed lines indicate the positions of the thermal boundary layer δth,
which varies from z+ = 2 to 4 with increasing Ra.

absent from the measured velocity profiles. The lack of a log-law region is another
confirmation that the boundary layer is not turbulent in the present range of Ra and
Pr. Another feature of the profiles is that the velocity decays quickly after reaching
its maximum value around several tens of z+. This is related to the fact that the mean
flow in the central region of a closed convection cell is zero (Qiu & Tong 2001; Xia et
al. 2003). Thus the properties of the flow field in the bulk have a strong influence on
its properties in boundary layer. This is very different from open systems like channel
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or pipe flows in which the velocity is maximum over an extended region in the central
part of the system. Note that the profile for the highest Ra in figure 23 appears
to exhibit a logarithmic region between z+ =4 and 10. However, as this region is
rather narrow and appears only for the highest Ra, we refrain from making this a
conclusive observation. It is known that for classic shear flows the logarithmic regime
appears for z+ > 30, so if the above observation of a possible logarithmic regime is
indeed confirmed in future studies it would imply that in thermal convective flows
the log-layer is shifted significantly toward the wall.

The root-mean-square velocities for four different Ra, normalized by friction
velocities, i.e. σ+

u = σu(z)/uτ , are presented in figure 24. Again, the vertical dashed
lines indicate the range of the thermal boundary layers for the various Ra. The peak
of the horizontal velocity fluctuation is seen to be around z+ ∼ 5. The closeness to
the wall of the maximum velocity fluctuations is another difference between turbulent
thermal convection and wall-bounded shear flow. For example, for pipe flows the peak
position of r.m.s. velocity fluctuations is around z+ ∼ 12 (Eggels et al. 1994; Shang
2002). In the present case the position z+ ∼ 5 is just outside the thermal boundary
layer. Therefore the large velocity fluctuations may be caused by the intermittent
emission of thermal plumes. Comparing figure 24 with figure 15, which also plots
r.m.s. profiles with different normalizations, it is seen that σmax

u and δσ are the relevant
quantities for these profiles. This is perhaps another difference between the boundary
layers in turbulent thermal convection and classical shear flows.

3.9. Possible implications of the present results

The overall conclusion one can draw from the results presented in this paper is that,
despite the existence of many differences, especially in the statistical quantities, in
a time-averaged sense, the viscous boundary layer remains laminar in the present
range of the Ra and Pr, and that the intermittent emissions of coherent structures
(the thermal plumes) from the boundary layer do not modify its properties in any
significant way from those of classical shear flows. One may therefore ask what would
happen at much higher values of Ra. We have seen in § 3.6 that a crossover between
the viscous stress and the Reynolds stress at the position of the viscous boundary
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Figure 25. (a) Ra-dependence of the shear Reynolds number Reshear . The extrapolation of
experimental data indicates that the boundary layer becomes turbulent (Reshear = 420) at
Ra � 2 × 1013. (b) Ra-dependence of the measured thermal boundary layer thickness δth

(solid circles) and 12δw (open squares) (δw is the viscous sublayer). The extrapolations of
experimental data suggests that the two length scale would cross at Ra � 2 × 1013, indicating
turbulent fluctuations penetrating the thermal boundary at this Ra.

layer will occur around Ra = 3 × 1010, suggesting this may be the onset Ra for the
boundary layer to become turbulent. At this Ra turbulent fluctuations only reach
the viscous boundary layer while the thermal boundary layer that nests inside the
viscous one is still laminar, which means that heat transfer across that layer is still
by conduction. As our boundary layer is very similar to those in traditional shear
flows, we may use knowledge from studying the classical boundary layers to examine
when our boundary layer will become ‘fully turbulent’, or when a new regime of heat
transfer may emerge.

The first criterion involves the so-called (boundary-layer-thickness-based) shear
Reynolds number, which is defined as Reshear = Uδυ/ν, where U is the time-averaged
velocity at δυ . The critical value for the instability of the boundary layer (i.e. the
boundary layer becomes turbulent) is Reshear = 420 (see, for example, Landau &
Lifshitz 1987). Using the measured values of δυ and U the Ra-dependence of Reshear

can be obtained, which is plotted in figure 25(a). The result shows that for the values
of Ra reached in the present experiment Reshear is well below the critical value, again
consistent with a laminar boundary layer. From an extrapolation of the current result
we see that a turbulent boundary layer is expected to occur at Ra � 2 × 1013.

The second criterion for a fully turbulent boundary layer uses the empirical result
that in turbulent boundary layers the viscous shear stress and the Reynolds (or
turbulent) shear stress are equal at a distance of z+ = 12 from the wall, i.e. at z = 12δw

(see, for example, Niemela & Sreenivasan 2003), where δw is the viscous sublayer
thickness. When this distance becomes smaller than the thermal layer δth, turbulent
fluctuations will have penetrated the thermal layer and the heat transport inside δth

will then be controlled by turbulence rather than conduction. In figure 25(b) we
plot both δth (solid circles) and 12δw (open squares) vs Ra, which again shows that
the thermal layer is far from turbulent for the present Ra. Again the extrapolations
of the experimental data suggest that for Ra � 2 × 1013 turbulent fluctuations will
penetrate the thermal layer. Note that the second extrapolation involves temperature
measurements that are independent of the velocity measurements, so the two
extrapolations are really independent of each other. Therefore, it is interesting that
the extrapolations based on two different criteria both indicate that for Ra > 2×1013

a new regime may emerge. This is the so-called ultimate regime in turbulent thermal
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convection predicted by Kraichnan, in which heat transport is expected to be
influenced strongly by boundary layer turbulence (Kraichnan 1962). It should be
noted that, by extrapolating two measured length scales, the thermal boundary layer
thickness and the length scale associated with the position of the maximum cutoff
frequency of temperature signal, Belmonte et al. (1994) found that the two scales
should cross near Ra � 1014, which is close to the present result. In a turbulent
helium gas convection experiment, Chavanne et al. (1997) observed a transition of
the scaling behaviour of Nu with Ra for Ra � 1011, which they interpreted as the
signature for transition to the Kraichnan regime. However, such a transition was not
observed in other similar experiments (Niemela et al. 2000; Niemela & Sreenivasan
2003). This further suggests that global heat transport measurements alone may not
be sufficient to resolve the issue on the existence of the Kraichnan regime and that
direct boundary layer measurements at very high Ra should shed some light on this
problem.

4. Summary and conclusions
In this paper we have presented results from high-resolution measurements of

various quantities of the velocity boundary layer in turbulent thermal convection.
These are obtained using the particle image velocimetry (PIV) technique in a
rectangular cell with the Rayleigh number Ra varying from 109 to 1010 and the Prandtl
number Pr fixed at 4.3, using water as the convecting fluid. Temperature profiles are
also measured near the bottom plate of the convection cell for the same values of
Ra and Pr. Although these measurements are primarily for obtaining the profiles
of the temperature-dependent fluid properties, the thermal boundary layer thickness
is also determined.

From the velocity measurement two length scales are obtained, which are the
velocity (or viscous) boundary layer thickness δυ base on the mean horizontal
velocity profile and the r.m.s. velocity boundary layer thickness δσ based on the
r.m.s. horizontal velocity profile. It is found that the scaling of δυ with the Reynolds
number satisfies the classical Blasius-type laminar boundary layer for the present
range of Ra and Pr, i.e. δυ ∼ Re−0.50; and that δσ scales with Re as δσ ∼ Re−0.72,
for which we are not aware of any theoretical predictions. It is also found that,
within the experimental resolution, the thermal boundary layer thickness δth and
the r.m.s. velocity boundary layer thickness δσ approximately coincide. By comparing
the relative strengths of the viscous shear stress and the Reynolds shear stress at the
boundary layer, we conclude that the velocity boundary layer remains laminar for
the highest Rayleigh number reached in the present experiment (∼2 × 1010). The fact
that the viscous boundary layer remains laminar, in a time-averaged sense, despite the
existence of the intermittent emission of thermal plumes, can also be seen from the
direct visualization of the velocity field near the boundary as shown in figure 4. Two
independent extrapolations of the present result, one based on velocity measurements
and the other on velocity and temperature measurements, both indicate that the
viscous boundary layer will become turbulent at Ra ∼ 2 × 1013.

With regard to the scaling of the temperature (σT ) and velocity (σw) r.m.s. profiles,
it is found that σT can be described by either a power law or logarithmic law of the
vertical distance from the horizontal plate, i.e. σT (z)/
T ∼ (z/H )α and σT (z)/
T ∼
α

′
ln(z/H ), with the power-law behaviour being more favourable. The exponent α is

found to depend on Ra and varies from −0.6 to −0.77, which is much larger than
the classical value of −1/3 predicted by Priestley. In the same region, the measured
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profiles σw(z) of the r.m.s. vertical velocity exhibit a much smaller scaling range and
are also consistent with either a power law (σw(z)/Umax ∼ (z/H )β) or a logarithmic
(σw(z)/Umax ∼ β

′
ln(z/H )) behaviour. Similar to the temperature case, the exponent β

and the slope β
′
also vary with Ra, but with much stronger Ra-dependence.

It is also found that, similar to traditional shear flows, there exists a classical
viscous sublayer in turbulent thermal convection despite the fact that a thermal
boundary layer nests within the viscous boundary layer in this system. On the other
hand, velocity profiles normalized by wall units exhibit no obvious logarithmic region,
which is probably a result of the very limited distance between the edge of the viscous
sublayer and the position of the maximum velocity. Compared to traditional shear
flows, the peak positions of r.m.s. profiles are found to be closer to the plate (at z+ � 5).
The Reynolds number dependence of several wall quantities are also measured
directly. These are the wall shear stress τw ∼ Re1.55, the viscous sublayer δw ∼ Re−0.91,
the friction velocity uτ ∼ Re0.80, and the skin-friction coefficient cf ∼ Re−0.34. All
of these scaling properties are very close to those predicted for classical Blasius-like
laminar boundary layers, except that of cf . These results suggest that the logarithmic
correction in various scaling exponents is not obvious in the present system. Our
overall conclusion is that the Blasius-like laminar boundary condition, in a time-
averaged sense, is a good approximation for the velocity boundary layer in turbulent
thermal convection for the present ranges of the Rayleigh number and the Prandtl
number.
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the Hong Kong Research Grants Council under Project Nos. CUHK 403705 and
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